- 使用fillna()函数–Using Fillna()
- 填充缺失数据–Fill missing values
Information System 7- Transmitting Information
发表于
分类于
技术杂谈
,
Information Systems
Machine Learning for Trading--1-4 Statistical Analysis and Stock Basics
发表于
分类于
技术杂谈
,
Machine Learning for Trading
本篇将介绍股市中的一些基本概念以及如何使用pandas和matplotlib库来对股票信息进行统计分析。
- 对全局数据进行统计分析–Compute Global Statistics
- 计算滚动的统计数据–Computing Rolling Statistics
- 布林带–Bollinger Bands
- 计算单日回报率-Compute daily returns
Information System 6- Analyzing Information for Business Decision-Making
发表于
分类于
技术杂谈
,
Information Systems
Learning Objectives
- Discuss the importance of having good decision-making skills
- Explain how decision-making changes depending on organizational level
- Discuss the role of information in decision-making
- Contrast structured, semistructured, and unstructured decisions
- Apply a decision-making methodology
- Choose the appropriate technology tool for a given decision-making task
Machine Learning for Trading--1-3 The Power of Numpy
发表于
分类于
技术杂谈
,
Machine Learning for Trading
- 创建一个numpy阵列–Creating NumPy Arrays
- 生成随机数–Generating Random Numbers
- 阵列属性–Array Attributes
- 阵列运算–Operations on Arrays
- 最大值的index–Locate maximum value
- 使用time函数–Using time function
- 获取阵列中的元素–Accessing Array Elements
- 数学运算-Arithmetic Operations
Information System 5- Storing and Organizing Information
发表于
分类于
技术杂谈
,
Information Systems
Learning Objectives
- Discuss the purpose of a database management system
- Dicide whether it is better to store data using a database management system or another alternative, such as a spreadsheet
- Explain the basic sturcture and components of relational databses
- Describe the purpose of foreign keys in a relational database
- Discuss the purpose of a relational databse schema and explain it notation
- List and describe a number of online databases
- Understand what Big Data is and how businesses can use it to make more informed decisions
Machine Learning for Trading--1-2 Working with Multiple Stocks
发表于
分类于
技术杂谈
,
Machine Learning for Trading
- 创建和合并DataFrame–Build a DataFrame in Pandas
- 读取多组数据
- 常用函数–Utility functions
- 数据截取–Slicing
- 绘制多张图表–Plotting Multiple Stocks
- 截取特定数据并生成图标–Slice and plot
Machine Learning for Trading--1-1 Reading and Plotting Data
发表于
分类于
技术杂谈
,
Machine Learning for Trading
Pandas是一个建立在 Python 之上的一个高效的,简单易用的数据结构和分析工具。 Pandas 的核心就是一个高效易用的数据类型:DataFrame。这个数据类型有点类似 R 语言的数据框 (Data Frame),也有点类似于 Excel 表格,但是比这两种更加适合在 Python 的语言环境内操作数据。在这个数据结构之下,我们可以轻松的对数据进行清洗,整理,归纳总结,合并,转换,计算等等。
- 从CSV文件中读取并输出数据 – Reading in a CSV File
- 选择特定行的数据–Select data in specific rows
- 输出某列数据的最大值、平均值–Find maximum\mean closing value for stock
- 配合matplotlib将数据绘制成折线图–Plotting
Information Systems 4- Gaining Strategic Value from Information
发表于
分类于
技术杂谈
,
Information Systems
Information Systems 3- Evaluating Informaiton
发表于
分类于
技术杂谈
,
Information Systems
Learning Objectives
- Discuss why it is important both personally and professionally to be an informed information consumer
- Describe information overload, its consequences, and approaches for dealing with information overload
- Discuss the relationship between information overload and information evaluation
- List and describe the dimesions of information quality
- List and describe the elements of an information evaluation framework
- Given an information-related task, evaluate information for its usefulness and believability