1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
| %% Machine Learning Online Class % Exercise 5 | Regularized Linear Regression and Bias-Variance % % Instructions % ------------ % % This file contains code that helps you get started on the % exercise. You will need to complete the following functions: % % linearRegCostFunction.m % learningCurve.m % validationCurve.m % % For this exercise, you will not need to change any code in this file, % or any other files other than those mentioned above. %
%% Initialization clear ; close all; clc
%% =========== Part 1: Loading and Visualizing Data ============= % We start the exercise by first loading and visualizing the dataset. % The following code will load the dataset into your environment and plot % the data. %
% Load Training Data fprintf('Loading and Visualizing Data ...\n')
% Load from ex5data1: % You will have X, y, Xval, yval, Xtest, ytest in your environment load ('ex5data1.mat');
% m = Number of examples m = size(X, 1);
% Plot training data plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5); xlabel('Change in water level (x)'); ylabel('Water flowing out of the dam (y)');
fprintf('Program paused. Press enter to continue.\n'); pause;
%% =========== Part 2: Regularized Linear Regression Cost ============= % You should now implement the cost function for regularized linear % regression. %
theta = [1 ; 1]; J = linearRegCostFunction([ones(m, 1) X], y, theta, 1);
fprintf(['Cost at theta = [1 ; 1]: %f '... '\n(this value should be about 303.993192)\n'], J);
fprintf('Program paused. Press enter to continue.\n'); pause;
%% =========== Part 3: Regularized Linear Regression Gradient ============= % You should now implement the gradient for regularized linear % regression. %
theta = [1 ; 1]; [J, grad] = linearRegCostFunction([ones(m, 1) X], y, theta, 1);
fprintf(['Gradient at theta = [1 ; 1]: [%f; %f] '... '\n(this value should be about [-15.303016; 598.250744])\n'], ... grad(1), grad(2));
fprintf('Program paused. Press enter to continue.\n'); pause;
%% =========== Part 4: Train Linear Regression ============= % Once you have implemented the cost and gradient correctly, the % trainLinearReg function will use your cost function to train % regularized linear regression. % % Write Up Note: The data is non-linear, so this will not give a great % fit. %
% Train linear regression with lambda = 0 lambda = 0; [theta] = trainLinearReg([ones(m, 1) X], y, lambda);
% Plot fit over the data plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5); xlabel('Change in water level (x)'); ylabel('Water flowing out of the dam (y)'); hold on; plot(X, [ones(m, 1) X]*theta, '--', 'LineWidth', 2) hold off;
fprintf('Program paused. Press enter to continue.\n'); pause;
%% =========== Part 5: Learning Curve for Linear Regression ============= % Next, you should implement the learningCurve function. % % Write Up Note: Since the model is underfitting the data, we expect to % see a graph with "high bias" -- Figure 3 in ex5.pdf %
lambda = 0; [error_train, error_val] = ... learningCurve([ones(m, 1) X], y, ... [ones(size(Xval, 1), 1) Xval], yval, ... lambda);
plot(1:m, error_train, 1:m, error_val); title('Learning curve for linear regression') legend('Train', 'Cross Validation') xlabel('Number of training examples') ylabel('Error') axis([0 13 0 150])
fprintf('# Training Examples\tTrain Error\tCross Validation Error\n'); for i = 1:m fprintf(' \t%d\t\t%f\t%f\n', i, error_train(i), error_val(i)); end
fprintf('Program paused. Press enter to continue.\n'); pause;
%% =========== Part 6: Feature Mapping for Polynomial Regression ============= % One solution to this is to use polynomial regression. You should now % complete polyFeatures to map each example into its powers %
p = 8;
% Map X onto Polynomial Features and Normalize X_poly = polyFeatures(X, p); [X_poly, mu, sigma] = featureNormalize(X_poly); % Normalize X_poly = [ones(m, 1), X_poly]; % Add Ones
% Map X_poly_test and normalize (using mu and sigma) X_poly_test = polyFeatures(Xtest, p); X_poly_test = bsxfun(@minus, X_poly_test, mu); X_poly_test = bsxfun(@rdivide, X_poly_test, sigma); X_poly_test = [ones(size(X_poly_test, 1), 1), X_poly_test]; % Add Ones
% Map X_poly_val and normalize (using mu and sigma) X_poly_val = polyFeatures(Xval, p); X_poly_val = bsxfun(@minus, X_poly_val, mu); X_poly_val = bsxfun(@rdivide, X_poly_val, sigma); X_poly_val = [ones(size(X_poly_val, 1), 1), X_poly_val]; % Add Ones
fprintf('Normalized Training Example 1:\n'); fprintf(' %f \n', X_poly(1, :));
fprintf('\nProgram paused. Press enter to continue.\n'); pause;
%% =========== Part 7: Learning Curve for Polynomial Regression ============= % Now, you will get to experiment with polynomial regression with multiple % values of lambda. The code below runs polynomial regression with % lambda = 0. You should try running the code with different values of % lambda to see how the fit and learning curve change. %
lambda = 0; [theta] = trainLinearReg(X_poly, y, lambda);
% Plot training data and fit figure(1); plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5); plotFit(min(X), max(X), mu, sigma, theta, p); xlabel('Change in water level (x)'); ylabel('Water flowing out of the dam (y)'); title (sprintf('Polynomial Regression Fit (lambda = %f)', lambda));
figure(2); [error_train, error_val] = ... learningCurve(X_poly, y, X_poly_val, yval, lambda); plot(1:m, error_train, 1:m, error_val);
title(sprintf('Polynomial Regression Learning Curve (lambda = %f)', lambda)); xlabel('Number of training examples') ylabel('Error') axis([0 13 0 100]) legend('Train', 'Cross Validation')
fprintf('Polynomial Regression (lambda = %f)\n\n', lambda); fprintf('# Training Examples\tTrain Error\tCross Validation Error\n'); for i = 1:m fprintf(' \t%d\t\t%f\t%f\n', i, error_train(i), error_val(i)); end
fprintf('Program paused. Press enter to continue.\n'); pause;
%% =========== Part 8: Validation for Selecting Lambda ============= % You will now implement validationCurve to test various values of % lambda on a validation set. You will then use this to select the % "best" lambda value. %
[lambda_vec, error_train, error_val] = ... validationCurve(X_poly, y, X_poly_val, yval);
close all; plot(lambda_vec, error_train, lambda_vec, error_val); legend('Train', 'Cross Validation'); xlabel('lambda'); ylabel('Error');
fprintf('lambda\t\tTrain Error\tValidation Error\n'); for i = 1:length(lambda_vec) fprintf(' %f\t%f\t%f\n', ... lambda_vec(i), error_train(i), error_val(i)); end
fprintf('Program paused. Press enter to continue.\n'); pause;
|